Rank dependency of weight multiplicities for simple Lie groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 152687
(http://iopscience.iop.org/0305-4470/15/9/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:08

Please note that terms and conditions apply.

Rank dependency of weight multiplicities for simple Lie groups

B G Wybourne ${ }^{\dagger}$
Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

Received 27 November 1981, in final form 27 April 1982

Abstract

The determination of the rank dependence of the weight multiplicities for the groups $\mathrm{O}_{2 k+1}, \mathrm{Sp}_{2 k}$ and $\mathrm{O}_{2 k}$ is simplified using the properties of Schur functions together with a simple weight space mapping. The weight multiplicities are factorised into products of much simpler quantities whose rank dependence is readily computed. The spinor weight multiplicities for $\mathrm{SO}_{2 k}$ are shown to be simply related to those of $\mathrm{O}_{2 k}$. The weight multiplicities for the k-part tensor representation of $\mathrm{SO}_{2 k}$ are examined in terms of difference characters. Some specific results are tabulated for $\mathrm{SO}_{2 k}$.

1. Introduction

Many algorithms have been developed for determining the weight multiplicities for irreducible representations (irreps) of the compact semi-simple Lie groups (Weyl 1926, Freudenthal 1954, Konstant 1959, Racah 1964, Speiser 1964). These algorithms generally fail to indicate the rank dependence of the weight multiplicities. King and Plunkett (1976) have indicated how the properties of Schur functions (\mathscr{S} functions) may be exploited to give the rank dependence of weight multiplicities for the classical Lie groups. They give specific results for the groups $\mathrm{U}_{k}, \mathrm{O}_{2 k+1}, \mathrm{Sp}_{2 k}$. In this paper, I show how the evaluation of the rank dependence of the weight multiplicities for the groups $\mathrm{O}_{2 k+1}, \mathrm{Sp}_{2 k}$ and $\mathrm{O}_{2 k}$ may be simplified, and more importantly, treat the special case of $\mathrm{SO}_{2 k}$ for the first time. Detailed results are presented for the latter case. I draw heavily upon King and Plunkett (1976) for matters of notation.

2. Weight multiplicities for $\mathbf{U}_{\boldsymbol{k}}$

The unitary group U_{k} admits a maximal toroidal subgroup

$$
\begin{equation*}
\mathscr{T}_{k} \sim \mathrm{U}_{1}^{1} \times \mathrm{U}_{1}^{2} \times \ldots \times \mathrm{U}_{1}^{k} \tag{1}
\end{equation*}
$$

which is the product of k one-dimensional unitary groups U_{1}. The irreps of the U_{1} groups are all one-dimensional and may be labelled as $\{\omega\}$ where ω is a positive or negative real number such that

$$
\begin{equation*}
\{\bar{\omega}\}=\{-\omega\} \tag{2}
\end{equation*}
$$

where $\{\bar{\omega}\}$ is contragredient to $\{\omega\}$.

[^0]The irreps of \mathscr{T}_{k} are all one-dimensional and may be specified as

$$
\{\boldsymbol{\omega}\}=\left\{\omega_{1}\right\}\left\{\omega_{2}\right\} \ldots\left\{\omega_{k}\right\}
$$

or for brevity as

$$
\begin{equation*}
\{\boldsymbol{\omega}\}=\left\{\omega_{1} \omega_{2} \ldots \omega_{k}\right\} \tag{3}
\end{equation*}
$$

The k numbers ω_{i} may be regarded as the k components of a vector in a k-dimensional vector space with $(\boldsymbol{\omega})$ being a weight vector. Since $\mathrm{U}_{k} \sqsupset \mathscr{T}_{k}$ we have for the covariant irreps $\{\lambda\}$ of U_{k} under $\mathrm{U}_{k} \downarrow \mathscr{T}_{k}$

$$
\begin{equation*}
\{\lambda\} \downarrow M_{\{\lambda\}}^{(\omega)}(\omega) \tag{4}
\end{equation*}
$$

where $M_{\{\lambda\}}^{(\omega)}$ is the weight multiplicity of the weight (ω) in the reduction of $\{\lambda\}$. Since the irreps of \mathscr{T}_{k} are all one-dimensional the number of weights ($\boldsymbol{\omega}$) obtained in (4) must equal the dimension of the irrep $\{\lambda\}$ of U_{k}.

As noted by King and Plunkett (1976) the weight multiplicities $M_{\{\lambda\}}^{(\omega)}$ of U_{k} are k independent and are in one-to-one correspondence with the integers $K_{\{\lambda\}}^{(\omega)}$ associated with the Kostka matrix (cf Macdonald 1979). For our purpose we shall assume the $M_{\{\lambda\}}^{(\boldsymbol{\omega})}$ are known for U_{k}.

3. Dominant weights

The weights ($\boldsymbol{\omega}$) of an irrep of some Lie group G exhibit reflection symmetry under the elements \mathscr{S} of the Weyl group W_{G} (cf King and Al-Qubanchi 1981). Given a weight vector ($\boldsymbol{\omega}$) of G then the vectors in the set $\left\{\mathscr{S} \omega: \mathscr{S} \in \mathrm{W}_{\mathrm{G}}\right\}$ are said to be G equivalent to $(\boldsymbol{\omega})$. The highest weight vector of a G equivalent set is said to be the G -dominant weight vector. Once the dominant weights, and their multiplicities, are known the remaining weights follow simply from the operations \mathscr{S} of W_{G}.

Let

$$
\begin{equation*}
\binom{k}{s_{1} s_{2} \ldots}=\frac{k!}{(k-u)!\Pi s_{i}!} \tag{5}
\end{equation*}
$$

with $u=\Sigma s_{i}$. Then if $(\boldsymbol{\omega})=\omega_{1}^{s_{1}} \omega_{s_{1}+1}^{s_{2}} \ldots$ is a dominant weight of $\mathrm{U}_{k}, \mathrm{O}_{2 k+1}, \mathrm{Sp}_{2 k}$ or $\mathrm{O}_{2 k}$ the number of weights connected to ($\boldsymbol{\omega}$) by the Weyl symmetry operations of the appropriate Weyl group is given by

$$
\begin{align*}
& \mathrm{U}_{k} \quad n(\boldsymbol{\omega})=\binom{k}{s_{1} s_{2} \ldots} \tag{6a}\\
& \mathrm{O}_{2 k+1}, \mathrm{Sp}_{2 k}, \mathrm{O}_{2 k} \quad n(\boldsymbol{\omega})=2^{u}\binom{k}{s_{1} s_{2} \ldots} \tag{6b}
\end{align*}
$$

for the tensor irreps. In the case of the spinor irreps $[\Delta ; \lambda]$ of $\mathrm{O}_{2 k+1}$ and $\mathrm{O}_{2 k}$ the number of weights connected is

$$
\begin{equation*}
n(\boldsymbol{\omega})=n(\Delta ; \boldsymbol{\sigma})=2^{k}\binom{k}{s_{1} s_{2} \ldots} \tag{6c}
\end{equation*}
$$

where $(\Delta ; \sigma)$ denotes weight vectors of the form

$$
\left(\sigma_{1}+\frac{1}{2}, \sigma_{2}+\frac{1}{2}, \ldots, \frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)
$$

In the case of $\mathrm{SO}_{2 k+1}$ equations ($6 b$) and ($6 c$) remain unchanged while for $\mathrm{SO}_{2 k}$ the right-hand side of ($6 b$) must be halved if $\omega_{k} \neq 0$ and in every case for ($6 c$). This follows since the irreps [λ] (tensor or spinor) of $\mathrm{O}_{2 k}$ involving $\lambda_{k} \neq 0$ split under $\mathrm{O}_{2 k} \downarrow \mathrm{SO}_{2 k}$ into conjugate pairs of irreps of $\mathrm{SO}_{2 k}$ and the weight space splits into two equal portions with half the weights of $[\lambda]$ of $\mathrm{O}_{2 k}$ in one and the other half in the other. The action of the Weyl group for $\mathrm{SO}_{2 k}$ is such that dominant weights having k non-zero parts with an even (odd) number of minus signs are connected to weights also having an even (odd) number of minus signs. Weights of different sign parity are totally disjoint.

4. Weight space mappings

The weight multiplicities $M_{\{\lambda\}}^{(\omega)}$ of the covariant irreps of U_{N} are N independent and the weights ($\boldsymbol{\omega}$) span a N-dimensional weight space. The weights $(\boldsymbol{\sigma})$ of the classical groups $\mathrm{O}_{2 k+1}, \mathrm{Sp}_{2 k}$ and $\mathrm{O}_{2 k}$ all span a k-dimensional weight space. The weight multiplicities for these groups are generally k dependent.

The set of weights $\{(\omega)\}$ of some irrep of U_{N} may be used to form a set of weights $\{(\boldsymbol{\sigma})\}$ under the mapping \mathscr{P}

$$
\begin{equation*}
\omega_{i}-\omega_{N+1-i} \xrightarrow{\mathscr{P}} \sigma_{i} \quad i=1,2, \ldots, k \tag{7}
\end{equation*}
$$

where $N=2 k$ or $2 k+1$. In general the mapping \mathscr{P} may be expressed in terms of dominant weights (σ) of the k-dimensional subspace of $(\boldsymbol{\omega})$ by writing

$$
\begin{equation*}
(\boldsymbol{\omega}) \xrightarrow{\mathscr{P}} \mathscr{M}_{(\boldsymbol{\omega})}^{(\boldsymbol{\sigma})}(\boldsymbol{\sigma}) \tag{8}
\end{equation*}
$$

where $\mathscr{M}_{(\boldsymbol{\omega})}^{(\boldsymbol{\sigma})}$ is the multiplicity with which the dominant weight $(\boldsymbol{\sigma})$ occurs. These multiplicity numbers are not necessarily k independent.

The array of numbers $\mathscr{M}_{(\boldsymbol{\omega})}^{(\boldsymbol{\sigma})}$ for fixed $\omega_{\omega}\left(\omega_{\omega}=\Sigma \omega_{i}\right)$ is dominated by null entries. These certainly arise if $p_{\sigma}>p_{\omega}$ or $p_{\sigma}=p_{\omega}$ and $\omega_{\sigma} \neq \omega_{\omega}$, or $\omega-\sigma$ results in any negative weight components. (NB we use p_{κ} to stand for the number of parts of (κ) etc.) Furthermore,

$$
\begin{equation*}
\mathcal{M}_{(\omega)}^{(\boldsymbol{\sigma})}=\delta_{(\omega)}^{(\boldsymbol{\sigma})} \quad \text { if } \quad \omega_{\omega}=\omega_{\sigma} \tag{9}
\end{equation*}
$$

while

$$
\begin{equation*}
\mathscr{M}_{(\omega)}^{(\boldsymbol{\sigma})}=N(\bmod 2) \quad \text { if } \quad \omega_{\omega}=\omega_{\sigma}+1 \tag{10}
\end{equation*}
$$

Of the remaining entries for $\mathscr{M}_{(\boldsymbol{\omega})}^{(\boldsymbol{\sigma})}$ some will be explicitly k dependent, some will depend on the parity of N, and some will be equal to an integer that is independent of N or k. In all cases it is a trivial combinatorial task to compute the k dependence of $\mathscr{M}_{(\boldsymbol{\omega})}^{(\boldsymbol{\sigma})}$ for arbitrary $(\boldsymbol{\omega})$ and $(\boldsymbol{\sigma})$. A given array of $\mathscr{M}_{(\boldsymbol{\omega})}^{(\boldsymbol{\sigma})}$ is checked by noting that

$$
\begin{equation*}
n(\boldsymbol{\omega})=\mathscr{M}_{(\boldsymbol{\omega})}^{(\boldsymbol{\sigma})} n(\boldsymbol{\sigma}) \tag{11}
\end{equation*}
$$

where $n(\omega)$ and $n(\sigma)$ are given by ($6 a$) and ($6 b$) respectively.

5. A \boldsymbol{k}-dependent unitary group mapping

A k-dependent multiplicity number $M_{(\lambda)}^{(\boldsymbol{\sigma})}$ may be defined by writing

$$
\begin{equation*}
\boldsymbol{M}_{\{\lambda\}}^{(\boldsymbol{\sigma})}=\boldsymbol{K}_{\{\lambda\}}^{(\boldsymbol{\omega})} \boldsymbol{M}_{(\omega)}^{(\boldsymbol{\sigma})} \tag{12}
\end{equation*}
$$

where $(\boldsymbol{\sigma})$ is a weight for a k-dimensional weight space associated with the covariant irrep $\{\lambda\}$ of U_{N}. The multiplicities $M_{\{\lambda\}}^{(\boldsymbol{\sigma})}$ may be readily calculated from a knowledge of $\mathcal{M}_{(\boldsymbol{\omega})}^{(\boldsymbol{\sigma})}$ multiplicities just derived and those of the Kostka matrix $\boldsymbol{K}_{\{\lambda\}}^{(\boldsymbol{\omega})}$.

6. Weight multiplicities for $\mathbf{O}_{\mathbf{2 k + 1}}, \mathrm{O}_{\mathbf{2 k}}$ and $\mathrm{Sp}_{\mathbf{2 k}}$

The weight multiplicities $M_{[\lambda]}^{(\boldsymbol{\sigma})}$ and $M_{(\lambda)}^{(\boldsymbol{\sigma})}$ associated with O_{N} and $\mathrm{Sp}_{2 k}$ respectively may be calculated from a knowledge of the k-dependent multiplicities just considered by noting that

$$
\begin{equation*}
M_{[\lambda]}^{(\boldsymbol{\sigma})}=M_{\{\lambda / C\}}^{(\boldsymbol{\sigma})} \tag{13a}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\langle\lambda\rangle}^{(\boldsymbol{\sigma})}=M_{\{\lambda / \mathbf{A}\}}^{(\boldsymbol{\sigma})} \tag{13b}
\end{equation*}
$$

where A and C are \mathscr{F}-function series (King 1975).

7. Weight multiplicities for spinor irreps of $\mathbf{O}_{\boldsymbol{N}}$

We now turn to the evaluation of weight multiplicities $M_{[\Delta ; \lambda]}^{(\Delta ; \sigma)}$ for the spinor irreps of O_{N}. We start by noting that (King 1975)

$$
\begin{equation*}
[\Delta ; \lambda]=\Delta \cdot[\lambda / P] . \tag{14}
\end{equation*}
$$

We then have for the tensor irreps in $[\lambda / P]$ the weights

$$
\begin{equation*}
M_{[\lambda / P]}^{(\tau)}(\boldsymbol{\tau}) \tag{15}
\end{equation*}
$$

where the multiplicities $M_{[\mu]}^{(\tau)}$ follow from the previous section. The 2^{k} weights associated with the basic spinor irrep Δ of $\mathrm{O}_{N}(N=2 k$ or $2 k+1)$ are all of the form

$$
\begin{equation*}
(\Delta)=\underbrace{\left(\pm \frac{1}{2} \pm \frac{1}{2} \ldots \pm \frac{1}{2}\right)}_{k \text { erms }} \tag{16}
\end{equation*}
$$

where all possible combinations of signs are to be taken. These weights (Δ) must be combined additively with the weights (τ) to give

$$
\begin{equation*}
\Delta(\boldsymbol{\tau}) \downarrow \mathcal{M}_{\Delta(\boldsymbol{\tau})}^{(\Delta ; \boldsymbol{\sigma})}(\Delta ; \boldsymbol{\sigma}) \tag{17}
\end{equation*}
$$

Combining (15) and (17) gives the weights for the irrep $[\Delta ; \lambda]$ of O_{N} as

$$
\begin{equation*}
[\Delta ; \lambda] \downarrow M_{[\lambda / P\}}^{(\tau)} \mathcal{M}_{\Delta(\tau)}^{(\Delta ; \boldsymbol{\sigma})}(\Delta ; \boldsymbol{\sigma}) \tag{18}
\end{equation*}
$$

and hence the weight multiplicities are given as

$$
\begin{equation*}
M_{[\Delta ; \lambda]}^{(\Delta ; \boldsymbol{\sigma})}=M_{[\lambda / P \mathcal{P}}^{(\boldsymbol{\tau})} \mathcal{M}_{\Delta ;(\tau)}^{(\Delta ; \boldsymbol{\sigma})} . \tag{19}
\end{equation*}
$$

The multiplicities $\mathscr{M}_{\Delta \cdot(\tau)}^{(\Delta ; \sigma)}$ can be readily evaluated in a k-dependent form by considering weights of the form

$$
\begin{equation*}
\left(\tau_{1} \pm \frac{1}{2}, \lambda_{2} \pm \frac{1}{2}, \ldots, \tau_{k} \pm \frac{1}{2}\right) \tag{20}
\end{equation*}
$$

 note that the dominant weights will be of the form

$$
\left(1+\frac{1}{2}, 1-\frac{1}{2}, \pm \frac{1}{2}, \ldots, \pm \frac{1}{2}\right)
$$

The second unit can occur in any of $k-1$ places and hence

$$
\mathscr{M}_{\Delta \cdot\left(1^{2}\right)}^{(\Delta ; 1)}=k-1 .
$$

We note that non-zero entries in the arrays $\mathscr{M}_{\Delta(\tau)}^{(\Delta ; \sigma)}$ are sparse. Consideration of the weights in $\Delta \cdot(\boldsymbol{\tau})$ shows that the weight $(\Delta ; \boldsymbol{\sigma})$ arises if and only if

$$
\begin{equation*}
\left\{\boldsymbol{\sigma} / 1^{s}\right\} \supset\{\boldsymbol{\sigma}\} . \tag{21}
\end{equation*}
$$

8. Weight multiplicities for spinor irreps of $\mathbf{S O}_{\mathbf{2 k}}$

The spinor irreps $[\Delta ; \lambda]$ of $\mathrm{O}_{2 k}$ split into a pair of conjugate irreps under $\mathrm{O}_{2 k} \downarrow \mathrm{SO}_{2 k}$ to give

$$
\begin{equation*}
[\Delta ; \lambda] \downarrow[\Delta ; \lambda]_{+}+[\Delta ; \lambda]_{-} . \tag{22}
\end{equation*}
$$

Noting that (King et al 1981)

$$
\begin{equation*}
[\Delta ; \lambda]_{ \pm}=\sum_{m}(-1)^{m} \Delta_{ \pm(-)^{m}}[\lambda / m] \tag{23}
\end{equation*}
$$

leads to

$$
\begin{equation*}
M_{[\Delta ; \lambda]_{+}}^{\left.(\Delta ; \boldsymbol{A})_{(-)}\right)}=\sum_{m}(-1)^{m} M_{[\lambda / m]}^{(\tau)} \mathcal{M}_{\left.\Delta_{(-)},\right)_{(-(\tau)}}^{\left.(\Delta ; \boldsymbol{\sigma})_{(\tau)}^{x}\right)} \tag{24}
\end{equation*}
$$

The terms in $\Delta_{(-)^{m}} \cdot(\tau)$ are all of the form

$$
(\Delta ; \boldsymbol{\omega})_{(-)^{k}}
$$

where $k=\omega_{\tau}-\omega_{\omega}+m$. However, the terms in $[\lambda / m]$ must satisfy

$$
\omega_{\tau}=\omega_{\lambda}-m-2 s
$$

where s is an integer and hence

$$
\begin{equation*}
k=\omega_{\lambda}-\omega_{\omega}-2 s \tag{25}
\end{equation*}
$$

As a consequence of (24) we must have

$$
\begin{equation*}
x=\left(\omega_{\lambda}-\omega_{\sigma}\right) \bmod 2 \tag{26}
\end{equation*}
$$

Thus we arrive at the important conclusion that

$$
\begin{equation*}
M_{[\Delta ; \lambda]_{ \pm}}^{(\Delta ;-)^{x}}=M_{[\Delta ; \lambda]}^{(\Delta ; \boldsymbol{\sigma})} \tag{27}
\end{equation*}
$$

where x satisfies (26) and we have related the multiplicities for $\mathrm{SO}_{2 k}$ to those of $\mathrm{O}_{2 k}$ in (27).

9. Weight multiplicities for tensor irreps of $\mathbf{S O}_{\mathbf{2 k}}$

If [λ] is a tensor irrep of $\mathrm{SO}_{2 k}$ with $\lambda_{k}=0$ then the weight multiplicities for $\mathrm{SO}_{2 k}$ are identical to those for $\mathrm{O}_{2 k}$. However, if $\lambda_{k} \neq 0$ then under $\mathrm{O}_{2 k} \downarrow \mathrm{SO}_{2 k}$ we have (King et al 1981)

$$
\begin{equation*}
[\lambda] \downarrow[\lambda]_{+}+[\lambda]_{-} \quad \lambda_{k} \neq 0 \tag{28}
\end{equation*}
$$

If $(\boldsymbol{\sigma})$ is a weight of $\mathrm{O}_{2 k}$ with $\sigma_{k}=0$ then for $\mathrm{SO}_{2 k}$

$$
\begin{equation*}
M_{[\lambda]_{ \pm}}^{(\boldsymbol{\sigma})}=\frac{1}{2} M_{[\lambda]}^{(\sigma)} \tag{29}
\end{equation*}
$$

and the weight multiplicities also follow from those of $\mathrm{O}_{2 k}$. Thus special attention is only required for the multiplicities of weights having k parts. These cases are most readily treated using difference characters.

If (λ) is a k-part partition then the difference character $[\lambda]^{\prime \prime}$ for $\mathrm{SO}_{2 k}$ is defined as

$$
\begin{equation*}
[\lambda]^{\prime \prime}=[\lambda]_{+}-[\lambda]_{-} \quad p_{k}=k \tag{30}
\end{equation*}
$$

It is convenient to write (King et al 1981)

$$
\begin{equation*}
[\lambda]^{\prime \prime}=\left[\square ; \lambda / 1^{k}\right]^{\prime \prime}=[\square ; \mu]^{\prime \prime} \tag{31}
\end{equation*}
$$

where

$$
[\mu]=\left[\lambda / 1^{k}\right] .
$$

Noting that (El-Samra and King 1979)

$$
\begin{equation*}
[\square ; \mu]^{\prime \prime}=\square^{\prime \prime}\langle\mu\rangle \tag{32}
\end{equation*}
$$

where $\langle\mu\rangle$ is a character of $\mathrm{Sp}_{2 k}$, leads to

$$
\begin{equation*}
[\square ; \mu]^{\prime \prime}=\mathcal{M}_{\square \cdot(\tau)}^{(\square \boldsymbol{\sigma})} \boldsymbol{M}_{\langle\mu}^{(\tau)}(\square ; \boldsymbol{\sigma})^{\prime \prime} \tag{33}
\end{equation*}
$$

and hence to
with $\omega_{\mu}-\omega_{\sigma}$ being an even positive integer.
Making use of (28) and (30) yields

$$
\begin{equation*}
[\square ; \mu]_{ \pm}=\frac{1}{2}\left[\boldsymbol{M}_{[\square ; \mu]}^{(\square ; \boldsymbol{\sigma})}(\square ; \boldsymbol{\sigma})+\boldsymbol{M}_{[\square ; \mu)^{\prime \prime}}^{(\square ; \boldsymbol{\sigma})^{\prime \prime}}(\square ; \boldsymbol{\sigma})^{\prime \prime}\right] \tag{35}
\end{equation*}
$$

and thence to

The multiplicities $M_{[\square ; \mu)}^{[\square ; \sigma)}$ are as for $\mathrm{O}_{2 k}$ discussed in §6. Thus we need only consider the evaluation of $\boldsymbol{M}_{[0}^{[0 ; \boldsymbol{\sigma}]^{\prime \prime}}$ defined in (34).

The arrays $\mathcal{M}_{\square}^{(\square ; \sigma)}(\boldsymbol{\tau})$ are sparse. Consideration of the weights in $\square^{\prime \prime} \cdot(\tau)$ shows that the weight $(\square ; \boldsymbol{\sigma})^{\prime \prime}$ arises if and only if

$$
\begin{equation*}
\left\{\boldsymbol{\sigma} / 2^{s}\right\} \supset\{\boldsymbol{\sigma}\} \tag{37}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathscr{M}_{\square}^{(\square) ; \boldsymbol{\tau})}{ }_{\boldsymbol{\tau})}^{\prime \prime}=\delta_{(\boldsymbol{\tau})}^{(\boldsymbol{\sigma})} \quad \text { if } \quad \omega_{\tau}=\omega_{\sigma} \tag{38}
\end{equation*}
$$

Furthermore, the non-null terms in $\mathcal{M}_{\square \cdot(\tau)}^{(\square)}$ are of sign

$$
\begin{equation*}
(-1)^{\frac{1}{2}\left(\omega_{\tau}-\omega_{\sigma}\right) \bmod 2} \tag{39}
\end{equation*}
$$

In determining the terms that arise in $\square^{\prime \prime} \cdot(\boldsymbol{\tau})$ it is only necessary to consider the weights of \square " of the form

$$
\left[1^{k-2 s} \overline{1}^{2 s}\right]
$$

where $(\overline{1})=(-1)$. We are thus led, simply and rapidly, to the evaluation of the few non-null entries for the array $\left.\mathcal{M}_{\square \cdot(\tau)}^{(\square)} \boldsymbol{\sigma}\right)^{\prime \prime}$.

10. Explicitly \boldsymbol{k}-dependent weight multiplicities

With the preceding results established it is now possible to determine the explicit k dependence of the weight multiplicities for any of the classical groups. By way of examples we give in table 1 the multiplicities $\mathscr{M}_{(\omega)}^{(\boldsymbol{\sigma})}$, for $\omega_{\omega} \leqslant 4$, as defined in equation (8). Where two entries occur, as in $\mathscr{M}_{(4)}^{(0)}$, the uppermost entry pertains to $N=2 k$ and the lower to $N=2 k+1$. These multiplicities may then be used in equation (12) to compute the k-dependent multiplicity numbers $M_{\{\lambda\}}^{(\boldsymbol{\sigma})}$ as given in table 2 for $\omega_{\lambda} \leqslant 4$. With these results established we may use (13a) and (13b) to compute the k dependence of the multiplicities $M_{[\lambda]}^{(\boldsymbol{\sigma})}$ and $M_{(\lambda)}^{(\boldsymbol{\sigma})}$ for $\mathrm{O}_{2 k}$ and $\mathrm{Sp}_{2 k}$ respectively. Tables of

Table 1. Multiplicities $\mathcal{M}_{(\omega)}^{(\boldsymbol{\sigma})}$ for $\omega_{\omega} \leqslant 4$.

			$\left(2^{2}\right)$	$\left(21^{2}\right)$	$\left(1^{4}\right)$	(3)	(21)	$\left(1^{3}\right)$	(2)	$\left(1^{2}\right)$	(1)	(0)
(4)	1											$\begin{aligned} & 0 \\ & 1 \end{aligned}$
						0					0	
(31)		1				1			1		1	
$\left(2^{2}\right)$			1						$\begin{aligned} & 0 \\ & 1 \end{aligned}$			k
$\left(21^{2}\right)$				1			$\begin{aligned} & 0 \\ & 1 \end{aligned}$		k-1	2	0 1	$\begin{aligned} & 0 \\ & k \end{aligned}$
$\left(1^{4}\right)$					1			$\begin{aligned} & 0 \\ & 1 \end{aligned}$		$k-2$	$\begin{aligned} & 0 \\ & k-1 \end{aligned}$	$\frac{1}{2} k(k-1)$
(3)						1						$\begin{aligned} & 0 \\ & 1 \end{aligned}$
(21)							1		$\begin{aligned} & 0 \\ & 1 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
$\left(1^{3}\right)$								1		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$k-1$	0
(2)									1			$\begin{aligned} & 0 \\ & 1 \end{aligned}$
$\left(1^{2}\right)$										1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	k
(1)											1	0
(0)												1

Table 2. Multiplicities $\boldsymbol{M}_{\{\lambda\}}^{(\sigma)}$ for $\omega_{\lambda} \leqslant 4$.
$(\boldsymbol{\sigma})$

$\{\lambda\}$	(4)	(31)	$\left(2^{2}\right)$	$\left(21^{2}\right)$	$\left(1^{4}\right)$	(3)	(21)	$\left(1^{3}\right)$	(2)	$\left(1^{2}\right)$	(1)	(0)
\{4\}	1					0	0	0	k	k	0	$\frac{1}{2} k(k+1)$
		1	1	1	1	1	1	1	($k+1$)	($k+1$)	$(k+1)$	$\frac{1}{2}(k+1)(k+2)$
\{31\}						0	0	0	$2 k-1$	$(3 k-2)$		$\frac{1}{2} k(3 k-1)$
		1	1	2	3	1	2	3	$2 k$	3 k	$\frac{3}{2} k(k+1)$	$\frac{1}{2}\left(3 k^{2}+3 k+2\right)$
$\left\{2^{2}\right\}$							0	0	(k-1)	$2(k-1)$	0	k^{2}
			1	1	2	0	1	2	k	(2k-1)	($2 k-1$)	$k(k+1)$
$\left\{21^{2}\right\}$							0	0		$(3 k-4)$	0	$\frac{3}{2} k(k-1)$
				1	3	0	1	3	($k-1$)	$3(k-1)$	$3 k-2$	$\frac{1}{2} k(3 k-1)$
$\left\{1^{4}\right\}$								0			0	
					1	0	0	1	0	($k-2$)	($k-1$)	$\frac{1}{2} k(k-1)$
\{3\}									0	0	k	0
						1	1	1	1	1	$k+1$	$k+1$
\{21\}									0	0	0	0
\{21\}							1	2	1	2	1	$2 k$
$\left\{1^{3}\right\}$										0		0
								1		1	$k-1$	k
\{2\}												k
									1	1		$k+1$
$\left\{1^{2}\right\}$											0	
										1	1	4
\{1\}												0
											1	1
\{0\}												1

these multiplicities have been given by King and Plunkett (1976) and will not be repeated here.

The spin multiplicities $\mathscr{M}_{\Delta \cdot(\tau)}^{(\Delta ; \sigma)}$ for O_{N} follow from $\S 7$ and are given in table 3 for $\omega_{\tau} \leqslant 4$. These multiplicities may be used in equation (19) to compute the multiplicities $M_{[\Delta ; i]}^{(\Delta ; \sigma)}$. Again such tables have been given by King and Plunkett (1976). The multiplicities $M_{\left.[\Delta ; \lambda]_{ \pm}\right)}^{(\Delta ;)_{(-)^{x}}}$ for $\mathrm{SO}_{2 k}$ follow directly from equation (27) giving for example

$$
M_{[\Delta ; 31]_{+}}^{(\Delta ; 1)}=\frac{1}{2}\left(k^{3}-k^{2}-2 k+2\right) .
$$

The difference character multiplicities $\mathcal{M}_{\square}^{(\square ; \boldsymbol{\sigma})}(\boldsymbol{\sigma})$ for $\omega_{\tau} \leqslant 4$ are given in table 4 and then used to derive the multiplicities $\left.M_{[\square}^{(\square) ; ~} ;\right]^{\prime \prime}$. shown in table 5. These latter multiplicities may be used in equation (36) to compute the weight multiplicities for the k-part tensor irreps of $\mathrm{SO}_{2 k}$.

It should be noted that for $\omega_{\mu}=\omega_{\sigma}$

$$
\begin{equation*}
\left.M_{[\square: \mu]}^{[\square ;} ; \boldsymbol{\sigma}\right)=M_{[\square ; \mu]^{\prime}}^{(\square ; \boldsymbol{\sigma})}=K_{\{\mu\}}^{(\boldsymbol{\sigma})} \tag{40}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\boldsymbol{M}_{[\square ; \mu]_{ \pm}}^{(\lfloor) ;)_{ \pm}}=K_{\{\mu\}}^{(\boldsymbol{\sigma})} \quad \text { and } \quad \boldsymbol{M}_{[\square ; \mu]_{ \pm}}^{(\square ; \boldsymbol{\sigma})_{ \pm}}=0 \tag{41}
\end{equation*}
$$

where $K_{\{\mu\}}^{(\boldsymbol{\sigma})}$ is an element of the Kostka matrix.
While it is a comparatively simple task to determine the k dependence of the difference weight multiplicities $M_{[\square ; \mu]^{\prime \prime}}^{(\square ; \sigma)}$ for $\mathrm{SO}_{2 k}$ the k dependence for the weight
Table 3. Spin multiplicities $\mathcal{M}_{\Delta \cdot(\tau)}^{(\Delta ; \sigma)}(N=k$ or $2 k+1)$.

	(31)	$\left(2^{2}\right)$	(21) ${ }^{2}$	$\left(1^{4}\right)$	(3)	(21)	$\left(1^{3}\right)$	(2)	$\left(1^{2}\right)$	(1)	(0)
(4) 1	-	-	-	-	1	-	-	-	-	-	-
(31)	1	-	-	-	k-1	1	-	$k-1$	-	-	-
$\left(2^{2}\right)$		1	-	-	-	1	-	-	1	-	-
(214)			1	-	-	$k-2$	3	$\frac{1}{2}(k-1)(k-2)$	$2 k-4$	$\frac{1}{2}(k-1)(k-2)$,
$\left(1^{4}\right)$				1	-	-	k-3	-	$\frac{1}{2}(k-2)(k-3)$	${ }_{6}^{1}(k-1)(k-2)(k-3)$	$\frac{1}{24} k(k-1)(k-2)(k-3)$
(3)					1	-	-	1	-	-	-
(21)						1	-	$k-1$	2	$k-1$	-
$\left(1^{3}\right)$							1	-	$k-2$	$\frac{1}{2}(k-1)(k-2)$	$\frac{1}{6} k(k-1)(k-2)$
(2)								1	-	1	-
$\left(1^{2}\right)$									1	$k-1$	$\frac{1}{2} k(k-1)$
(1)										1	k
(0)											1

Table 4. Multiplicities $\mathcal{M}_{\square \cdot(\tau)}^{\left.(\square)^{\sigma}\right)}$ for $\omega_{\tau} \leqslant 4$.

	(31)	$\left(2^{2}\right)$	$\left(21^{2}\right)$	$\left(1^{4}\right)$	(3)	(21)	$\left(1^{3}\right)$	(2)	$\left(1^{2}\right)$	(1)	(0)
(4) 1								-1			
(31)	1								-2		
$\left(2^{2}\right)$		1						$-k+1$			$\frac{1}{2} k(k-1)$
(21) ${ }^{2}$			1						$-k+2$		
(14)				1							
(3)					1					-k	
(21)						1				$-k+1$	
$\left(1^{3}\right)$							1				
(2)								1			$-k$
$\left(1^{2}\right)$									1		
(1)										1	
(0)											1

Table 5. Multiplicities $M_{[\square \square ; \mu]^{\prime \prime}}^{(\square) \text { for } \omega_{\mu}} \leqslant 4$.

	(31)	$\left(2^{2}\right)$	$\left(21^{2}\right)$	$\left(1^{4}\right)$	(3)	(21)	$\left(1^{3}\right)$	(2)	$\left(1^{2}\right)$	(1)	(0)
(4) 1	1	1	1	1				0	0		0
(31)	1	1	2	3				$k-1$	$k-1$		0
$\left(2^{2}\right)$		1	1	2				0	$k-1$		$\frac{1}{2}(k-1)$
$\left(21^{2}\right)$			1	3				$k-2$	$2 k-4$		$\frac{1}{2}\left(k^{2}-3 k+2\right)$
$\left(1^{4}\right)$				1				0	$k-3$		$\frac{1}{2} k(k-3)$
(3)					1	1	1				
(21)						1	2			$k-1$	
$\left(1^{3}\right)$							1			$k-2$	
(2)								1	1		0
$\left(1^{2}\right)$									1		$k-1$
(1)										1	
(0)											1

multiplicities $M_{[\square ; \mu]}^{(\square ; \sigma)}$ of $\mathrm{O}_{2 k}$ is complicated by the complexity of the expansion of $[\square ; \mu]$ into terms of the type $\square \cdot[\lambda]$ (King et al 1981).

11. Conclusions

In making physical applications of the classical Lie groups it is desirable to be able to see how the various group properties depend on the rank k of the group (Wybourne 1982). This avoids the need to engage in endless repetition each time a group of a different rank is considered. A knowledge of the rank dependence of group properties allows us to investigate general properties of representations without regard to specific ranks. In this paper we have outlined methods for determining the rank dependence of weight multiplicities extending the earlier work by King and Plunkett (1976).

Acknowledgment

I am grateful to Dr R C King for a number of constructive comments and in particular proving that there are no terms having fewer than k parts on the right-hand sides of equations (33) and (35).

References

El-Samra N and King R C 1979 J. Phys. A: Math. Gen. 122305
Freudenthal H 1954 Indag. Math. 16369
King R C 1975 J. Phys. A: Math. Gen. 8429
King R C and Al-Qubanchi A H A 1981 J. Phys. A: Math. Gen. 1451
King R C, Luan Dehuai and Wybourne B G 1981 J. Phys. A: Math. Gen. 142059
King R C and Plunkett S P O 1976 J. Phys. A: Math. Gen. 9863
Konstant B 1959 Trans. Am. Math. Soc. 9353
Macdonald I G 1979 Symmetric Functions and Hall Polynomials (Oxford: Clarendon)
Racah G 1964 Group Theoretical Concepts and Methods in Elementary Particle Physics ed F Gürsey (New York: Gordon and Breach) pp 1-36
Speiser D R 1964 Group Theoretical Concepts and Methods in Elementary Particle Physics ed F Gürsey (New York: Gordon and Breach) pp 201-76
Weyl H 1926 Math. Z. 243
Wybourne B G 1982 Rank dependency of group properties in Proc. 10th Int. Col. on Group-Theoretical Methods in Physics to appear in Physica

[^0]: † Permanent address: Physics Department, University of Canterbury, Christchurch, New Zealand.

